Reg. No. $\square$
r

## Question Paper Code : 11294

## B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016 <br> First Semester <br> Civil Engineering <br> MA 1101 - MATHEMATICS - I <br> (Common to all branches)

(Regulations 2008)

## Time : Three Hours

Maximum : 100 Marks

## Answer ALL questions.

$$
\text { PART - A }(10 \times 2=20 \text { Marks })
$$

1. Find the sum and product of the Eigen values of the matrix $A=\left[\begin{array}{rrr}1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3\end{array}\right]$.
2. Find the characteristic equation of the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$
3. Show that the sphere with center $(1,2,-2)$ and radius 3 , passes through the origin.
4. Write down the equation of the cylinder whose axis is $y$ - axis and the distance between the axis and the generating curve is a.
5. Find the radius of curvature of the parabola $y^{2}=4 a x$ at $y=2 a$.
6. If the center curvature of a curve at a variable point ' $t$ ' on it is $\left(2 a+3 a t^{2},-2 a t^{3}\right)$, find the evolute of the curve.

If $x^{y}+y^{x}=c$, find $\frac{d y}{d x}$.

If $u=\frac{y^{2}}{x}, v=\frac{x^{2}}{y}$, find $\frac{\partial(u, v)}{\partial(x, y)}$

Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$
10. Convert the equation $x y^{\prime \prime}-3 y^{\prime}+x^{-1} y=x^{2}$ as a linear equation with constant coefficients.

## PART - B (5 $\times 16=\mathbf{8 0}$ Marks $)$

11. (a) (i) Using Cayley Hamilton theorem, find $\mathrm{A}^{-1}$ when

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3  \tag{8}\\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

(ii) Using similarity transformation diagonalize the matrix.

$$
\mathrm{A}=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

## OR

(b) (i) Reduce the quadratic form $10 x^{2}+2 y^{2}+5 z^{2}-4 x y+6 y z-10 z x$ to canonical form through an orthogonal reduction.
Find the eigen values and eigen vector of the matrix.

$$
A=\left[\begin{array}{lll}
3 & -4 & 4 \\
1 & -2 & 4 \\
1 & -1 & 3
\end{array}\right]
$$

12. (a) (i) Show that the lines $\frac{x-2}{3}=\frac{y-1}{2}=\frac{z-3}{4}$ and $\frac{x-1}{4}=\frac{y-1}{3}=\frac{z-1}{5}$ are coplanar. Find the equation to the plane containing them.
(ii) Find the centre and radius of the circle $x^{2}+y^{2}+z^{2}-2 x-2 y-4 z-10=0$, $x+y+2 z=8$

## OR

(b) (i) Find the length and equation of the line of shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x-3}{3}=\frac{y+7}{2}=\frac{z-6}{4}$
(ii) Find the equation of the cone whose vertex is the point $(1,2,3)$ and whose guiding curve is the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$.
3. (a) (i) Find the radius of the curvature for the curve $y^{2}=12 x$ at $(3,6)$.
(ii) Find the equation of the envelope for the family of the lines $\frac{x}{a}+\frac{y}{b}=1$ with the condition on the parameters $\mathrm{a}+\mathrm{b}=\mathrm{c}$ for a constant C .

## OR

(b) (i) Find the circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at a point (a, a).
(ii) Find the evolute of the parabola $y^{2}=4 a x$, considering it as the envelope of its normals.
4. (a) (i) Find and classify the extreme values, if any, of the function $f(x, y)=x^{2}+y^{2}+x y+\frac{1}{x}+\frac{1}{y}$.
(ii) Find the Tailor's series expansion of $\mathrm{e}^{x} \cdot \sin y$ near the point $(-1, \pi / 4)$, upto the third degree term.
(b) (i) If $x=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$, prove that the equation $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$ is equivalent to $\frac{\partial u}{\partial r}+\frac{1}{r} \tan \left(\frac{\pi}{4}-\theta\right) \frac{\partial u}{\partial \theta}=0$.
(ii) Find the maximum value of $x^{m} y^{n} z^{p}$, when $x+y+z=a$, using Lagrange multiplier method.
15. (a) (i) Solve: $\left(D^{4}-2 D^{3}+D^{2}\right) y=x^{2}+e^{x}$.
(ii) Solve : $\left(x^{2} \mathrm{D}^{2}-x \mathrm{D}+1\right) \mathrm{y}=\left(\frac{\log x}{x}\right)^{2}$

## OR

(b) (i) Solve the simultaneous equations :

$$
\begin{equation*}
\frac{d x}{d t}+2 x-3 y=5 t ; \frac{d y}{d t}-3 x+2 y=2 e^{2 t} \tag{8}
\end{equation*}
$$

(ii) Solve by the method of variation of parameters $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d}^{2}}+\mathrm{y}=x \sin x$.

